Article 3319

Title of the article

THE STUDY OF NONLINEAR EIGENVALUE PROBLEMS FOR THE MAXWELL EQUATION SYSTEM DESCRIBING THE PROPAGATION OF ELECTROMAGNETIC WAVES IN REGULAR NONUNIFORM SHIELDED (CLOSED) WAVEGUIDE STRUCTURES OF CIRCULAR CROSS SECTION 

Authors

Smol'kin Evgeniy Yur'evich, Candidate of physical and mathematical sciences, associate professor, sub-department of mathematics and supercomputer modeling, Penza State University (40, Krasnaya street, Penza, Russia), E-mail: e.g.smolkin@hotmail.com
Snegur Maksim Olegovich, Postgraduate student, Penza State University (40, Krasnaya street, Penza, Russia), E-mail: snegur.max15@gmail.com
Lapich Andrey Olegovich, Student, Penza State University (40, Krasnaya street, Penza, Russia), E-mail: lapich.a@yandex.ru
Gamayunova Lyudmila Yur'evna, Student, Penza State University (40, Krasnaya street, Penza, Russia), E-mail: gamayunova.mila@yandex.ru 

Index UDK

517.927.2:621.372.8 

DOI

10.21685/2072-3040-2019-3-3 

Abstract

Background. The purpose of the work is to study the spectrum of the problem of propagating electromagnetic waves in regular inhomogeneous shielded (closed) waveguide structures of circular cross section.
Material and methods. To find a solution, the method of operator pencils and operator functions is used.
Results. The spectral properties of propagating (decaying) waves in regular inhomogeneous shielded (closed) waveguide structures are studied.
Conclusions. The proposed approach can be generalized to study the wave spectrum of regular inhomogeneous shielded (closed) waveguide structures of arbitrary cross section. 

Key words

electromagnetic wave propagation problem, shielded (closed) dielectric waveguide with circular cross section, Maxwell equation, differential equations, variational formulation, Sobolev spaces 

 Download PDF
References

1. Smirnov Yu. G. Doklady AN SSSR [Reports of the USSR Academy of Sciences]. 1990, no. 312 (3), pp. 597–599. [In Russian]
2. Smirnov Yu. G. Differentsial'nye uravneniya [Differential equations]. 1991, no. 27 (1), pp. 140–147. [In Russian]
3. Delitsin A. L. Differentsial'nye uravneniya [Differential equations]. 2000, no. 36 (5), pp. 629–633. [In Russian]
4. Delitsin A. L. Izvestiya RAN. Seriya matematicheskaya [Proceedings of the Russian Academy of Sciences. Mathematical series]. 2007, no. 71 (3), pp. 61–112. [In Russian]
5. Smirnov Yu. G. Matematicheskie metody issledovaniya zadach elektrodinamiki [Mathematical methods for studying electrodynamics problems]. Penza: Inf.-izd. tsentr PenzGU, 2009, 268 p. [In Russian]
6. Costabel M. SIAM J. Math. Anal. 1988, vol. 19 (3), pp. 613–626.
7. Kato T. Teoriya vozmushcheniy lineynykh operatorov [Perturbation theory of linear operators]. Moscow: Mir, 1972. [In Russian]
8. Adams R. Sobolev spaces. New York: Academic Press, 1975.
9. Smirnov Yu. G., Smol'kin E. Yu. Differentsial'nye uravneniya [Differential equations]. 2017, no. 53 (10), pp. 1298–1309. [In Russian]
10. Smirnov Yu. G., Smol'kin E. Yu. Doklady Akademii nauk [Reports of the Russian Academy of Sciences]. 2018, no. 478 (6), pp. 1–4. [In Russian]
11. Smirnov Yu. G., Smol'kin E. Yu. Differentsial'nye uravneniya [Differential equations]. 2018, no. 54 (9), pp. 1196–1206. [In Russian]
12. Gokhberg I. Ts., Kreyn M. G. Vvedenie v teoriyu lineynykh nesamosopryazhennykh operatorov v gil'bertovom prostranstve [Introduction to the theory of linear non-selfadjoint operators in a Hilbert space]. Moscow: Nauka, 1965. [In Russian]
13. Radzievskiy G. V. Matematicheskie zametki [Mathematical notes]. 1977, no. 21 (3). – S. 391–398. [In Russian]

 

Дата создания: 09.12.2019 08:44
Дата обновления: 09.12.2019 09:05